If you’re a fan of special “academic” days of celebration such as Pi Day, Powers of Ten Day, and Fibonacci Day, celebrated on November 23rd, then we have something in common! What student isn’t interested in anything that involves “celebration?” It can be a good thing to set aside whatever studies are happening at the time, and for an hour- or the entire day- just stop and have some fun with a particular concept.
Your students may already be familiar with the Fibonacci sequence, but if not – what better day to introduce them to the fascinating Fibonacci? Here are some creative ways to celebrate the day! [Note: You can find wonderful resources for teaching all about the Fibonacci sequence and the beauty of mathematical patterns in the universe on the 4th-5th grade MATH and LOGIC page. Fibonacci Fun is one!)
VIDEO INTRODUCTION – This is a great video to share with students to introduce the day! Another fantastic video is this TED talk presented by mathematician Arthur Benjamin.
FIBONACCI DATES– If your students are already familiar with the sequence, you might start by asking why November 23rd was chosen to be Fibonacci Day. What other dates could have been chosen? (January 12th, for one) How many dates can be made from the sequence (day and month only)? I count nine in all, but New Year’s Day is already taken!
What if we included month, day, and year (2 digits)? Was anyone born on a Fib Day (e.g. May 8, 2013)?
FIB POETRY – Similar to Haiku, a fib poem is a six-line poem in which the syllables in each line of the poem reflect the sequence. The first two lines have 1 syllable, the next 2 syllables, then 3, 5, and 8 syllables. Students can be encouraged to experiment with longer poems or poems in which the words replace syllables in the composition. Here’s an example of a longer poem, and you can find many examples on the web, including these.
MYSTERY MATH SEQUENCE ~ Other sequences can be made that are similar to Fibonacci’s but start off with two different numbers. One example is the Lucas Series. Students might enjoy creating their own sequences, but HERE is a puzzle to present that invites students to guess the mystery sequence based on clues. Once they’ve solved this one, challenge students to create their own by writing clues to their sequences.
CONSECUTIVE SUMS ~ Math lessons with consecutive sums are fun for kids, and HERE is one that prompts students to notice patterns within patterns by adding consecutive Fibonacci numbers. The Teacher Resource page provides everything you need to get the most out of this activity. if your students are familiar with squares and square roots, you could go one step further with this challenge.
FIBONACCI PUZZLES – There are many to choose from HERE (easier) and HERE. You may be familiar with the puzzle 2048. Jonathan Ross created 987, which is similar but involves merging Fibonacci numbers.
I’ve also created a MATH and LOGIC Progressive Puzzle with a Fibonacci theme which could be a fun addition to your Fibonacci studies. You can find it in my TPT store ($2.00)
GOLDEN TREASURE HUNT ~ The Golden Ratio and its prevalence in works of art and architecture has been questioned in recent years, but it’s the irrational number 1.618…, found by dividing a larger Fibonacci number by the preceding consecutive one (e.g. 89 divided by 55). The larger the Fibonacci numbers, the closer to the “divine proportion.” Many rectangular objects such as index cards, windows, playing cards, and light-switch plates have lengths and widths that are consecutive Fibonacci numbers. Begin by having students color “almost golden rectangles” on 1 cm. graph paper (1 x 2cm., 2 x 3 cm., 3 x 5 c.m., and 5 x 8 cm. Once students get the idea, have them look around the room or at home to find something (rectangular) that is close to this in proportion.
PASCAL’S TRIANGLE CONNECTION – Before sharing THIS LINK with students, begin creating the triangle on the board and have students continue the pattern. Challenge students to find the Fibonacci sequence in the triangle (the answer is SECRET #5, found HERE). Students might enjoy finding other patterns, too, and learning more about the triangle. You can find other patterns HERE. This TEDEd video and lesson can add to this activity.
FRACTAL ART – Fractals and their connection to the Fibonacci sequence can be challenging to explain. The TEDEd video below is a great help in just demonstrating how they are formed, and the DIG DEEPER section provides additional information and links to resources. HERE is another resource that provides some helpful explanations. Even if your students don’t fully understand fractals, they can work together to create a giant Sierpinski triangle like the one shown here. Provide triangular graph paper (free downloads HERE) and let the kids figure out how to make this! If you’d like to try to build a Sierpinski pyramid or kite with straws or paper, check out this page!
The awesome Sierpinski pyramid pictures are courtesy of Tracy Zalud, Illinois GT Education Teacher who says her students “saw the fractals come to life!” |
ENGINEERING CHALLENGE ~ Teach Engineering has connected the Fibonacci sequence to a coding challenge you can find HERE. If you have access to LEGO® Mindstorms® robots, your students might like to try it. (Note: There are some cool measurement pages and a video you might want to check out even if you don’t have the robots).
ORIGAMI SUNFLOWERS ~ If you’d like to create a display about the Fibonacci sequence, HERE are directions for creating the spiral centers of sunflowers with origami paper.
GOLDEN RATIO ART ~ This is an activity included in many Fibonacci units, but if you can devote more time to doing an art project, HERE is a link to some instructions. Shown below are some that my students created.
If you have any quick games, puzzles or activities you can share to celebrate Fibonacci Day, we’d love to hear about them! Comment below!
SEE ALSO: